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A new unconditionally stable algorithm for steady-state fluid simulation of high
density plasma discharge is suggested. The physical origin of restriction on simulation
time step is discussed and a new method to overcome it is explained. To compare
the new method with previous other methods, a one-dimensional fluid simulation of
inductively coupled plasma discharge is performed.c© 2001 Academic Press
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1. INTRODUCTION

A lot of research on high density plasma discharges such as inductively coupled plasma
(ICP), electron cyclotron resonance, and Helicon wave discharges is being conducted,
because the progress in submicron electronic device fabrication demands a higher degree
process optimization [1]. For transport modeling of high density plasma discharge, fluid
simulation [2–4] has been extensively used to study discharge characteristics, because the
global insight on the profiles of quantities such as densities, temperatures, fluxes, and
potential can be obtained. But for a stable fluid simulation of high density plasma, there are
severe restrictions on the time step (1t) and the grid size (1z), because the shielding time
scale of an electric field perturbation is very short, and the sheath length is quite small.

For the grid size (1z) limitation, there are several methods to manage the restriction (1)
by modeling the sheath and plasma separately, and utilizing appropriate plasma-sheath
boundary condition [4], (2) by utilizing upwind difference scheme, (3) by using exponential
scheme [5], and so on. And for the time step (1t) restriction, the maximum time step is
concerned with various time scales: mean time of ionization and collision, particle and
energy confinement time, Courant time step, inverse of plasma frequency (ωp), and dielectric
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relaxation time (τd). The simulation time step using an explicit method cannot exceed the
minimum value of those time scales. The most severe restriction is due to theω−1

p and
τd [6]. As an example, for typical ICP discharge conditions, the minimum time step is
the dielectric relaxation time∼10−13 s, which is actually impractical. However, usually,
the main purpose of fluid simulation of the high density plasma discharges is not in the
description of a transient effect or wave excitations but in the achievement of steady-state
values. In fluid simulation of steady state, it is desirable to take a time step close to Courant
time step which is larger thanω−1

p or τd.
Several methods to overcome the limitation on the simulation time step are suggested

[2–4]. In [2, 3], they used time step larger thanτd using a semiimplicit solution of Poisson’s
equation. However, as will be described in the next section, some more demands for im-
provement on the stability and the accuracy still remain.

Therefore, in this work, we suggest a new stable and accurate method by imitating a
realistic, physical shielding process of electric field perturbation to overcome the dielectric
limitation on time step. The new method is applied to a one-dimensional ICP discharge
model, and the simulation results are compared with previous methods. Section 2 describes
details of the new method, and Section 3 presents the simulation results using the present
method compared with other methods.

2. DESCRIPTION OF THE NEW ALGORITHM

The usually adopted set of equations for fluid simulation of high density plasma discharges
are the continuity, momentum, Poisson, and electron temperature equations.

∂ni

∂t
+∇ · Γi = νionne, (1)

∂ne

∂t
+∇ · Γe = νionne, (2)

∂Γi

∂t
= eni

M
E− νi Γi − 1

M
∇(ni Ti ), (3)

∂Γe

∂t
= −ene

m
E− νeΓe− 1

m
∇(neTe), (4)

∇ · E = 4πe(ni − ne) , (5)

3

2

∂(neTe)

∂t
= −∇ ·Q− eΓe · E+ Pext− Pcoll, (6)

whereΓi is ion flux,Γe is electron flux,ni is ion density,ne is electron density,νion is the
ionization collision frequency,M is ion mass,νi is ion neutral collision frequency,Ti is ion
temperature,m is electron mass,νe is electron neutral collision frequency,Te is electron
temperature,Pcoll is collisional power loss per volume,Q is electron energy flux, andPext is
externally applied power per volume. Here the stress term in Eqs. (3) and (4) is neglected.
For the electron momentum equation, we followed the procedure presented in [2, 3], and for
the ion momentum equation, although we can include and calculate it directly, we exclude
it for the sake of convenience in the development of the new method. When Eq. (5) is solved
along with Eq. (2) in an explicit time integration scheme, the severe time step limitation
occurs.
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To overcome the limitation, we rearrange the given equations. Equations (1) and (2) give

∂n

∂t
+∇ · Γ = 0, (7)

wheren = ni − ne andΓ = Γi − Γe. Substitution of the time derivative of Poisson’s equa-
tion to Eq. (7) gives

∇ ·
(
∂E
∂t
+ 4πeΓ

)
= ∇ · (4πJtot) = 0, (8)

whereJtot is the total current density. Using the differential form of Faraday’s law of
electromagnetic induction, we can express the term in large parentheses as∇ × (cB). In
this work, we will develop a new method for overcoming the time step limitation for the
case of the term in large parentheses, total current (Jtot) being zero:

4πJtot = ∇ × (cB) = ∂E
∂t
+ 4πeΓ = 0. (9)

Since we are focusing on developing quantities which describe a plasma in steady state, we
can assume that the time derivative of the electric field will be zero. And, by ambipolarity,
the conduction current will also be zero:Γi = Γe impliesΓ = 0. There, surely, exist cases
where total current density is not zero. For instance, we can consider the case for the
capacitive radio frequency discharge, where a net current across plasma exists. And when
the direction of ion flux and that of the electron flux differ from each other, current generated
by electrons and ions out of plasma, and flowing through the conducting chamber wall,
exists, soJtot 6= 0. In this preliminary study, we only deal with the simple case,Jtot = 0,
and a method for managingJtot 6= 0 will be developed in future work.

In applying finite difference method (FDM) in time evolution, we have to integrate
∂E/∂t + 4πeΓ = 0 during finite time step,1t

∫ 1t

0

[
∂E
∂t
+ 4πeΓ(t)

]
= 0,

where 0≤ t ≤ 1t . Then we have

1E = E(1t)− E(0) = −4πe
∫ 1t

0
Γ(t) dt, (10)

1ρ = 1

4πe
∇ · (1E), (11)

where1E and1ρ represent the time variation of electric field and charge density before
and after simulation time step, respectively. The first idea of the present method is to replace
the electron continuity equation with Eq. (11). First, we obtain the time variation of the
electric field (1E) during a simulation time step. Second, we calculate the charge density
variation (1ρ) using Poisson’s equation. And finally we get electron density change using
1ne = 1ni −1ρ. The second idea lies in the method to obtain the FDM form of Eq. (10).
In the explicit and implicit methods,Γ is assumed to be constant during the integration.
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When the explicit method is used, by usingΓ(t) = 0(0), we have

δE(t) = −4πeΓ(0)t, (12)

and for the implicit method, by applyingΓ(t) = Γ1t), we get

δE(t) = −4πeΓ(1t)t, (13)

whereδE(t) is the time variation of electric field during 0≤ t ≤ 1t , and1t is the simulation
time step. Figure 1 showsδE(t) for three methods (explicit, implicit, and our method) with
realistic physical damping of electric field perturbation whose relaxation time isτ . Basically,
the explicit method uses the time derivative of the value att = 0; if the derivative is large
it would make a numerical problem. Thus this method is applicable when time step is
much smallerτ :1t ¿ τ . δE(t) in the explicit method is overestimated for time step larger
than the relaxation time:1t > τ . The overestimation will change the sign ofδE and cause
numerical instability. On the other hand, since the implicit method uses time advancing
Γ(1t), it is numerically stable even if the simulation time step is larger than the relaxation
time:1t > τ . But δE is underestimated; therefore the implicit method cannot assure the
accuracy. Because the implicit method utilizes the time derivative of the value att = 1t ,
for cases when the derivative is small, it will take a small value. To sum up, the explicit and
implicit methods cannot achieve numerical stability or sufficient accuracy for large time
step. We will develop a numerically stable and accurate method by imitating the physical
shielding process of electric field perturbation.

We calculate the integral without the assumption thatΓ is constant during integration.
Let Γi (t) = Γi 0+ δΓi (t), Γe(t) = Γe0+ δΓe(t), ρ(t) = ρ0+ δρ(t), and letE(t) = E0+
δE(t) during the simulation time step, 0≤ t ≤ 1t . Here subscript “0” indicates values
before time evolution of quantities, and “δ” represents the time variation of quantities

FIG. 1. Illustration showing physical change of electric perturbation and numerically calculated values for
various methods.
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during simulation time step. If the electric field is dealt with implicitly, and densities and
temperatures are treated explicitly, then momentum equations become

∂(δΓi )

∂t
= ω2

i

4πe
δE− νi δΓi , (14)

∂(δΓe)

∂t
= − ω2

e

4πe
δE− νeδΓe(0≤ t ≤ 1t), (15)

whereωi and ωe are ion and electron plasma frequencies respectively. And∂E/∂t +
4πeΓ = 0 becomes

∂δE(t)
∂t

= −4πe[Γ0+ δΓ(t)] (0≤ t ≤ 1t), (16)

whereΓ0 = Γi 0− Γe0 andδΓ(t) = δΓi (t)− δΓe(t). The time variation of charge density is

δρ(t) = 1

4πe
∇ · (δE(t)). (17)

Solving Eqs. (14) and (15), we have

δΓi = ω2
i

4πe
exp(−νi t)

∫ t

0
exp(νi ξ)δE(ξ)dξ, (18)

δΓe = − ω2
e

4πe
exp(−νet)

∫ t

0
exp(νeξ)δE(ξ)dξ (0≤ t ≤ 1t). (19)

Equations (16), (18), and (19) yield

∂δE
∂t
= −4πeΓ0+

∫ t

0

[
e−νe(t−ξ)

τe
+ e−νi (t−ξ)

τi
− 1

τd

]
∂δE
∂ξ

dξ, (20)

whereτe = νe/ω
2
e, τi = νi /ω

2
i , and 1/τd = 1/τe+ 1/τi . It is noticeable that the process of

reaching Eq. (20) is similar to that of obtaining the exponential scheme [5] which is used for
removing grid size restriction. Equation (20) is the Volterra equation of special type because
the kernel in the equation depends only on the difference of the two arguments,t − ξ .

Two initial conditions forδE are required to solve Eq. (20), and it is given by

[δE]t=0 = 0 ,

[
∂δE
∂t

]
t=0

= −4πeΓ0. (21)

Afte r some algebra, the solution of Eq. (20) becomes

δE(t) = −4πeΓ0

[
τd +

3∑
k=1

Rk

s2
k

exp(skt)

]
, (22)

where

R1,2,3 = [(τeνi + τi νe)s1,2,3+ (τe+ τi )νeνi ][s2,3,1− s3,1,2]

τi τe(s1− s2)(s2− s3)(s3− s1)
,

ands1,2,3 are the zeros of

s3+ (νe+ νi )s
2+

(
νeνi + νe

τi
+ νi

τe

)
s+

(
1

τe
+ 1

τi

)
νeνi = 0.
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This equation predicts electric field of future time. We can simplify Eq. (22) for two
cases.

First, if collision frequenciesνe andνi are sufficiently large that the two exponential
terms in Eq. (20) can be neglected, then Eq. (22) becomes

δE(t) = −4πeΓ0τd

[
1− exp

(
− t

τd

)]
. (23)

Second, utilizing the fact thatωi ¿ ωe impliesτe¿ τi , we can neglect the second term
in the integrand in Eq. (20). In this case, we have

δE(t) = −4πeΓ0

[
τd + R1

s2
1

exp(s1t)+ R2

s2
2

exp(s2t)

]
, (24)

where

1/τc = νe+ 1/τi ,

R1,2 = ± (τd − τe)s1,2− τeνe

τdτe(s1− s2)
,

and

s1,2 = −1/τc ±
√

1/τ 2
c − 4νe/τd

2
.

TheδE in Eq. (24) can be classified by collision dominance.
(1) If νe ≥ 2ωe+ 1/τi , when the collision is dominant,s1,2 is real and negative. Since the

collision frequency is large in this case,δE eventually comes to that in Eq. (23). This case of
high collision frequency can be found in plasmas display panels:Te ∼ 4 eV,ne ∼ 1011cm−3,
and gas pressure is hundreds of Torr, which imply 2ωe ≤ νe− 1/τi .

(2) If νe < 2ωe+ 1/τi , when collision is not dominant,δE is expressed as

δE(t) = −4πeΓ0

[
τd + 2

∣∣∣∣R1

s2
1

∣∣∣∣ cos(ξ t + θ) exp

(
− t

τc

)]
, (25)

whereξ = 2ωe

√
1− ([νe+ 1/τe− 1/τd] /2ωe)

2, θ = arg(R1/s2
1). This is the case when

the collision is not dominant. This is applicable for typical ICP discharge conditions. The
oscillation term in Eq. (25) appears to be due to the imaginary part ofs1,2, and its oscillation
frequencyξ depends on plasma frequency, electron neutral collision frequency, and dielec-
tric relaxation time which characterize the relaxation time scale of electric field. That is,
ξ reflects the transient effects. Since we give our attention not to the transient effect but to
steady state, we trace the oscillation center. This can be achieved by setting cos(ξ1t + θ)
to cos(θ). Actually, it does not matter in simulation if we adopt1t À τc, which implies the
second term in the parentheses goes to zero. Summarizing, we have solved Eq. (16); if the
collision is dominant, the solution is given in Eq. (23). In this case the relaxation time scale of
the electric field is the dielectric relaxation time. If the collision is not dominant, the solution
is given by Eq. (25), and in this case the relaxation time scale of electric field isν−1

e andτi .
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Finally, sinceδE(t) is calculated,1E,1ρ, and1ne are given by

1E = δE(1t), (26)

1ρ = 1

4πe
∇ · (1E), (27)

1ne = 1ni −1ρ, (28)

where1 is the difference of values before and after simulation time step. The flow chart of
the new method is given in Fig. 2. The main algorithm is the substitution of the electron con-
tinuity equation as follows: We calculate successively (1) the time variation of electric field
(1E) using Eq. (22), (2) the time variation of charge density using1ρ = ∇ · (1E)/(4πe),
and (3) the time variation of electron density using1ne = 1ni −1ρ.

Therefore the new method overcoming the time step limitation is developed and is un-
conditionally stable. It is noticeable that the procedure for making a finite difference form
in the new method resembles that in exponential scheme [5].

3. ONE-DIMENSIONAL FLUID SIMULATION RESULTS AND DISCUSSIONS

As an example application of the present method, a one-dimensional fluid simulation of
Ar plasma discharge is performed. The fluid equations for describing this case are

∂ni

∂t
= −∂0i

∂z
+ Riz, (29)

∂E

∂z
+ 4πe0 = 0 (30)

∂0i

∂t
= eni

M
E − νi0i − 1

M

∂(ni Ti )

∂z
, (31)

FIG. 2. Schematic diagram (flow chart) of algorithm.
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∂0e

∂t
= −ene

m
E − νe0e− 1

m

∂(neTe)

∂z
, (32)

∂E

∂z
= 4πe(ni − ne) , (33)

3

2

∂(neTe)

∂t
= −∂Q

∂z
− e0eE + Pext− Pcoll, (34)

whereRiz is the ionization rate per volume and other variables are mentioned in previous
section. We can see that electron continuity equation is replaced withJtot = 0. Since our
method is not sensitive to boundary conditions, we take simple boundary conditions:φ = 0,
ne = 0, ni = 0, ∂Te/∂z= 0, and∂0i,e/∂z= 0.

In the finite difference expression of fluxes, we applied an exponential scheme [7] because
it provides numerically stable estimates of the particle flux. Finite difference forms become

nn+1
i,k − nn

i,k

1t
= −0

n
i,k+1/2− 0n

i,k−1/2

1z
+ Rk, (35)

1En+1
k+1/2 = −4πe

(
0n

i,k+1/2− 0n
e,k+1/2

)
×
[
τd,k+1/2+ 2

∣∣∣∣R1,k+1/2

s2
1,k+1/2

∣∣∣∣ cos(θk+1/2) exp

(
− 1t

τc,k+1/2

)]
, (36)

1ρn+1
k = 1

4πe

1En+1
k+1/2−1En+1

k−1/2

1z
(37)

nn+1
e,k = nn

e,k + nn+1
i,k − nn

i,k −1ρn+1
k , (38)

0n+1
i,k+1/2+

1

νi,k+1/2

0n+1
i,k+1/2− 0n

i,k+1/2

1t

= Ai,k+1/2

[
pi,k+1/2

1− exp(pi,k+1/2)
nn

i,k+1−
pi,k+1/2 exp(pi,k+1/2)

1− exp(pi,k+1/2)
nn

i,k

]
, (39)

0n+1
e,k+1/2+

1

νe,k+1/2

0n+1
e,k+1/2− 0n

e,k+1/2

1t

= Ae,k+1/2

[
pe,k+1/2

1− exp(pe,k+1/2)
nn

e,k+1−
pe,k+1/2 exp(pe,k+1/2)

1− exp(pe,k+1/2)
nn

e,k

]
, (40)

φn+1
k+1 − 2φn+1

k + φn+1
k−1

(1z)2
= −4πe

(
nn+1

i,k − nn+1
e,k

)
(41)

Tn+1
e,k − Tn

e,k

1t
= Tn+1

e,k

3

uk+1/1− uk−1/2

1z
− uk+1/2Tn+1

e,k+1/2− uk−1/2Tn+1
e,k−1/2

1z

− 2

3nn
e,k

(
∂q

∂z

)
k

+ 2

3

Pext,k − Pcoll,k

nn
e,k

− Rk

nn
e,k

Tn+1
e,k , (42)

where subscriptk ork+ 1/2 indicate space grid location, superscriptn implies current time
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level variables,n+ 1 stands for the future time level variables to be solved for, and1 in E
or ρ means difference of values between time stepsn+ 1 andn.

And

(∂q/∂z)k = −5
{

nn
e,k+1/2Tn

e,k+1/2

(
Tn+1

e,k+1− Tn+1
e,k

)
/1z− nn

e,k−1/2Tn
e,k−1/2

×(Tn+1
e,k − Tn+1

e,k−1

)
/1z

}
/(2mνk1z),

Ai,k+1/2 = Ti /Mνi,k+1/21z,

pi,k+1/2 = eEk+1/21z/Ti ,

Ae,k+1/2 = Te,k+1/2/mνe,k+1/21z,

pe,k+1/2 = −eEk+1/21z/Te,k+1/2,

and

uk+1/2 = 0e,k+1/2/ne,k+1/2.

We assume that, as is usual for the ICP discharge, the local power deposition profile
is Pext = P0 exp(−2z/δ), whereδ is a skin depth; the ionization rate isRiz = νizne, where
νiz = nNσizve(Te) exp(−εiz/Te). HerenN is neutral gas density,σiz is constant,ve is electron
mean thermal speed, andεiz is the ionization energy.

For comparison with other method, we considered a semiimplicit method [2] as follows.
Poisson’s equation at the future time level is(

∂2φn+1

∂z2

)
k

= −4πe
(
nn+1

i − nn+1
e

)
k
. (43)

The finite difference form of electron density equation can be written as

nn+1
e,k = nn

e,k +1t

(
∂ne,k

∂t

)
,

and(∂ne,k/∂t) is obtained from time advanced potential:(
∂ne,k

∂t

)
= − e

mνe

∂

∂z

[
nn

e

∂φn+1

∂z

]
k

+
[

1

mνe

∂2
(
nn

eTn
e

)
∂z2

]
k

+ Riz,k.

When obtainingnn+1
i , we did not use time advanced potential. The substitution ofnn+1

i ,
nn+1

e into Eq. (43) gives

(
1+ 4πe1tµen

n
e

)
k

[
∂2φn+1

∂z2

]
k

+ 4πe1t

[
µe

(
∂nn

e

∂z

)(
∂φn+1

∂z

)]
k

(44)

= −4πe
(
nn+1

i − nn
e

)
k
+ 4πe1t

[
1

mνe

∂2
(
nn

eTn
e

)
∂z2

+ Riz

]
k

, (45)

whereµe = e/mνe. Solving this equation we could obtainφn+1
k . In the semiimplicit method,

the time derivative of electron flux is neglected.
Figure 3 shows profiles of electron density, potential, and temperature under 10mTorr,

500 W. 500 mesh is used in Fig. 3. The maximum allowed time step for stable solution
is 10−11 for the semiimplicit method and 5× 10−10 s for the new method. The simulation
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FIG. 3. Electron density (ne), potential (φ), and electron temperature (Te) profiles for a pressure of 10mTorr
and 500 W Ar plasma: Solid line for proposed method and dashed line for semiimplicit method.

time step depends on the number of mesh points used. For example, when 30 mesh points
are used,1t for the semiimplicit method is 10−9 s and for the new method is 10−8 s.
This dependence of time step on mesh points is due to Courant time step. For simulation
conditions, ifv ∼ 107 cm/s and1z∼ 10/N cm, whereN is the number of mesh points,
then the Courant time step is about 10−8 s for 30 mesh points and 10−9 s for 500 mesh
points. Comparison between two methods yields good agreement in profile even though
maximum time step for stable solution in the new method is about 10 times larger than that
in the semiimplicit method.

FIG. 4. Electron density (ne, square), potential (φ, circle), and electron temperature (Te, triangle) vs pressure
for 500 W: Solid line for global modeling, filled scatters for proposed method, and hollow scatters for semiimplicit
method.
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Figure 4 shows electron density and temperature, and potential for various pressures
and 500 W power. The real line is obtained from a global model [8] and the scatter
data from fluid simulations: filled scatters correspond to the proposed method, and hol-
low scatters correspond to the semiimplicit method. All three parameters for pressures
are in good agreement among the three methods. The simulation time step for the new
method is larger than that for the semiimplicit method by several orders of magnitude. In
spite of larger time step, the two methods show almost the same results. Global modeling
results in the same qualitative trends as the other two methods with some differences in
quantities.

4. CONCLUSIONS

We developed a new method to overcome the dielectric relaxation time restriction in
steady-state fluid simulation of high density plasma discharges when the local ambipolarity
is satisfied. The new method is successfully developed based on (1) replacement of electron
continuity equation with differential form of Faraday’s law of induction for cases when
Jtot = 0 and (2) imitating the physical shielding process of electric perturbation. It was
discussed that the present method is unconditionally stable and more accurate than any
implicit method.

The exponential method [7] gives numerically stable estimates of particle flux even though
the voltage between mesh points is compatible or larger than the characteristic energyD/µ
(D is the diffusion coefficient andµ is the mobility), and thus it enables us to use the large
mesh size. However, there still remains the restriction on the time step in the application of
the exponential scheme alone. The new method provides stable values of electron density
although the simulation time step is larger than the dielectric relaxation time step;1t is
restricted only by Courant time step in the new method. Application of the new method
to the fluid simulation without the exponential method needs the fine mesh size, and this
allows the small simulation time step because the fine mesh size makes Courant time step
small. By using both the exponential method for the large mesh size and the new method
for the large time step, we could save much computation time, because the larger mesh
size gives the larger Courant time step, which permits the larger simulation time step. And
the results using the new method with the exponential method are in good agreement with
those using semiimplicit method. Although the method in this paper is developed only
for cases when the local ambipolarity is satisfied (Jtot = 0) and applicable for such cases,
the simplified model provides fundamental ideas to manage the time step restriction by
replacing the electron continuity equation. For more general application, the development
of methods for cases when the total current density exists will be done in future work.
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